The LPX-Bern Model
LPX-Bern (“Land surface Processes and eXchanges” model of the University of Bern) is a Dynamic Global Vegetation Model (DGVM) of intermediate complexity. It simulates terrestrial vegetation dynamics and biogeochemical processes of various land surface covers, including representations of the area under human use (Strassmann et al., 2008; Stocker et al., 2011) and peatland (Wania et al., 2009), and is one of the few DGVMs with global peatland representation (Spahni el al., 2013; Stocker et al., 2014; Müller and Joos, 2020). It is constrained spatially and temporally by observational records from preindustrial era to present-day. LPX-Bern has fully coupled water, carbon, and nitrogen cycles and has the unique capacity to explicitly simulate multiple greenhouse gases (H2O, CO2, CH4, N2O) and carbon isotopes (Stocker et al., 2013). In addition to research on the recent past from seasonal to centennial scales (Sun et al., 2024), LPX-Bern is especially well-suited to conduct long-term experiments on millennial to G-IG timescales due to its cost-efficient nature (Ruosch et al., 2016; Joos et al., 2020; Müller and Joos, 2021). Large parameter ensembles can be readily performed for uncertainty assessments and probabilistic future projections, as well as direct model-data comparisons to constrain and validate the model performance (Lienert and Joos, 2018).
MORE
References
- Joos, F., R. Spahni, B.D. Stocker, S. Lienert, J. Muller, H. Fischer, J. Schmitt, I.C. Prentice, B. Otto-Bliesner, and Z.Y. Liu, N2O changes from the Last Glacial Maximum to the preindustrial - Part 2: terrestrial N2O emissions and carbon-nitrogen cycle interactions. Biogeosciences, 2020. 17(13): p. 3511-3543. [DOI]
- Lienert, S. and F. Joos, A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences, 2018. 15(9): p. 2909-2930. [DOI]
- Müller, J. and F. Joos, Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum. Biogeosciences, 2021. 18(12): p. 3657-3687. [DOI]
- Müller, J. and F. Joos, Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation. Biogeosciences, 2020. 17(21): p. 5285-5308. [DOI]
- Ruosch, M., R. Spahni, F. Joos, P.D. Henne, W.O. Van der Knaap, and W. Tinner, Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology, 2016. 22(2): p. 727-740. [DOI]
- Spahni, R., F. Joos, B.D. Stocker, M. Steinacher, and Z.C. Yu, Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century. Climate of the Past, 2013. 9(3): p. 1287-1308. [DOI]
- Stocker, B.D., K. Strassmann, and F. Joos, Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model. Biogeosciences, 2011. 8(1): p. 69-88. [DOI]
- Stocker, B.D., R. Roth, F. Joos, R. Spahni, M. Steinacher, S. Zaehle, L. Bouwman, R. Xu, and I.C. Prentice, Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Climate Change, 2013. 3(7): p. 666-672. [DOI]
- Stocker, B.D., R. Spahni, and F. Joos, DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci. Model Dev., 2014. 7(6): p. 3089-3110. [DOI]
- Strassmann, K.M., F. Joos, and G. Fischer, Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus Series B-Chemical and Physical Meteorology, 2008. 60(4): p. 583-603. [DOI]
- Sun, Q., F. Joos, S. Lienert, S. Berthet, D. Carroll, C. Gong, A. Ito, A.K. Jain, S. Kou-Giesbrecht, A. Landolfi, M. Manizza, N. Pan, M. Prather, P. Regnier, L. Resplandy, R. Séférian, H. Shi, P. Suntharalingam, R.L. Thompson, H. Tian, N. Vuichard, S. Zaehle, and Q. Zhu, The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O. Global Biogeochemical Cycles, 2024. 38(7): p. e2023GB008010. [DOI]
- Wania, R., I. Ross, and I.C. Prentice, Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Global Biogeochemical Cycles, 2009. 23(3). [DOI]